DAGs and the Causal Revolution

Types of data

Experimental

Observational

You have control over which units get treatment You don't have control over which units get treatment

Which kind lets you prove causation?

Causation with observational data

Can you prove causation with observational data?

Why is it so controversial to use observational data?

The causal revolution

AND DANA MACKENZIE THE BOOK OF WHY

JUDEA PEARL

THE NEW SCIENCE OF CAUSE AND EFFECT

Causal diagrams

Directed acyclic graphs (DAGs)

Graphical model of the process that generates the data

Maps your philosophical model

Fancy math ("do-calculus") tells you what to control for to isolate and identify causation

How to draw a DAG

What is the causal effect of an additional year of education on earnings?

Step 1: List variables

Step 2: Simplify

Step 3: Connect arrows

Step 4: Use logic and math to determine which nodes and arrows to measure

1. List variables

Education (treatment) \rightarrow Earnings (outcome)

Location	Ability	D	emographics
Socioeono	omic status		Year of birth

Compulsory schooling laws Job connections

2. Simplify

Education (treatment) \rightarrow **Earnings (outcome)**

Location	Ability	D	emographics
Socioeonomic status			Year of birth

Compulsory schooling lawsJob connectionsBackground

Education causes earnings

Background, year of birth, location, job connections, and school requirements all cause education

Location and background are probably related, but neither causes the other. Something unobservable (U1) does that.

Your turn #1

Does a longer night's sleep extend your lifespan?

Step 1: List variables

Step 2: Simplify

Step 3: Connect arrows

Use dagitty.net

05:00

Causal identification

All these nodes are related; there's correlation between them all

We care about Edu → Earn, but what do we do about all the other nodes?

Causal identification

A causal effect is *identified* if the association between treatment and outcome is propertly stripped and isolated

Paths and associations

Arrows in a DAG transmit associations

You can redirect and control those paths by "adjusting" or "conditioning"

Three types of associations

Confounding

d-connection

Effect of money on elections

What are the paths between money and win margin?

Money \rightarrow Margin

Money \leftarrow Quality \rightarrow Margin

Quality is a backdoor

Closing doors

Close the backdoor by adjusting for Z

Closing doors

Find the part of campaign money that is explained by quality, subtract it out. This is the residual part of money.

Find the part of win margin that is explained by quality, subtract it out. This is the residual part of win margin.

Find the relationship between the residual part of money and residual part of win margin. This is the causal effect.

Closing doors

Compare candidates as if they had the same quality

Remove differences that are predicted by quality

Hold quality constant

How to adjust

Include term in regression

$egin{aligned} ext{Win margin} = &eta_0 + eta_1 ext{Campaign money} + \ &eta_2 ext{Candidate quality} + arepsilon \end{aligned}$

d-separation

If we control for Z, X and Y are now "d-separated" and the association is isolated!

Closing backdoors

Block all backdoor paths to identify the main pathway you care about

Education \rightarrow **Earnings**

Education \rightarrow Job connections \rightarrow Earnings

Education \leftarrow **Background** \rightarrow **Earnings**

 $\begin{array}{l} \textbf{Education} \leftarrow \textbf{Background} \leftarrow \textbf{U1} \rightarrow \textbf{Location} \rightarrow \\ \textbf{Earnings} \end{array}$

Education \leftarrow **Location** \rightarrow **Earnings**

 $\begin{array}{l} \mbox{Education} \leftarrow \mbox{Location} \leftarrow \mbox{U1} \rightarrow \mbox{Background} \rightarrow \\ \mbox{Earnings} \end{array}$

Education \leftarrow Year \rightarrow Earnings

All paths

Adjust for Location, Background and Year to isolate the Education → Earnings causal effect

Let the computer do this!

How do you know if this is right?

You can test the implications of the model to see if they're right in your data

 $X \perp Y \mid Z$

X is independent of Y, given Z

Testable implications

The model implies the following conditional independences:

- Education ⊥ Earnings I Background, Job connections, Location, Year
- Required schooling ⊥ Job connections I Education
- Required schooling \perp Year
- Required schooling ⊥ Earnings I Background, Job connections, Location, Year
- Required schooling ⊥ Earnings I Background, Education, Location, Year
- Required schooling ⊥ Background
- Required schooling ⊥ Location
- Job connections ⊥ Year I Education
- Job connections ⊥ Background I Education
- Job connections ⊥ Location I Education
- Year ⊥ Background
- Year ⊥ Location

Your turn #2

Go to andhs.co/nyt and skim the article

Pick one of the causal claims in the article

Draw a DAG for that causal claim

Determine what needs to be adjusted to identify the effect

06:00

Causation

Causation

Causation and overcontrolling

Should you control for job connections?

Colliders

Programming and social skills

Do programming skills reduce social skills?

You go to a tech company and conduct a survey. You find a negative relationship! Is it real?

Programming and social skills

Do programming skills reduce social skills?

No! **Hired by a tech company** is a collider and we controlled for it.

This inadvertently connected the two.

Colliders can create fake causal effects

Colliders can hide real causal effects

Chicago Bulls 2009-10

Height is unrelated to basketball skill... among NBA players

Colliders and selection bias

Three types of associations

How to analyze RCTs