The Grammar of Graphics

Mapping data to aesthetics

Statistics and Computing

Leland Wilkinson

The Grammar of Graphics

Second Edition

Deringer

Aesthetic

Visual property of a graph

Position, shape, color, etc.

Data

A column in a dataset

Your turn #1

Watch this video

andhs.co/rosling

Make a list of all the variables shown in the graph (think about columns in a dataset)

Make a list of how those variables are shown in the graph (think about the graph's aesthetics and geometries)

05:00

Mapping data to aesthetics

Data	Aesthetic	Geometry
Wealth (GDP/capita)	Position (x-axis)	Point
Health (Life expectancy)	Position (y-axis)	Point
Continent	Color	Point
Population	Size	Point
Year	Time	Animation

Mapping data to aesthetics

Data	aes()	geom
Wealth (GDP/capita)	X	<pre>geom_point()</pre>
Health (Life expectancy)	У	<pre>geom_point()</pre>
Continent	color	<pre>geom_point()</pre>
Population	size	<pre>geom_point()</pre>
Year	transition	<pre>transition_time()</pre>

ggplot() template

```
ggplot(data = DATA) +
GEOM_FUNCTION(mapping = aes(AESTHETIC MAPPINGS))
```

```
ggplot(data = gapminder_2007) +
geom_point(mapping = aes(x = gdpPercap,
y = lifeExp,
color = continent,
size = pop)))
```

This is a dataset named gapminder_2007:

country	continent	gdpPercap	lifeExp	рор
Afghanistan	Asia	974.5803384	43.828	31889923
Albania	Europe	5937.029526	76.423	3600523
•••	•••	•••	•••	•••

Health and wealth

Aesthetics

size

shape

color (continuous)

alpha

Your turn #2

Add color, size, alpha, and shape aesthetics to your graph.

Experiment!

Do different things happen when you map aesthetics to discrete and continuous variables?

What happens when you use more than one aesthetic?

How would you make this plot?

Same aesthetics, different geoms

Geoms

ggplot(data = DATA) + GEOM_FUNCTION(mapping = aes(AESTHETIC MAPPINGS))

Possible geoms

Example geom	What it makes
geom_col()	Bar charts
<pre> geom_text() </pre>	Text
geom_point()	Points
d geom_boxplot()	Boxplots
geom_sf()	Maps

Possible geoms

There are dozens of possible geoms!

See the **ggplot2** documentation for complete examples of all the different geom layers

Also see the ggplot cheatsheet

Your turn #3

Replace this scatterplot with boxplots. Use the cheatsheet.

Your turn #4

Make a histogram of bill_length_mm. Use the cheetsheet. Hint: don't supply a y variable.

Your turn #5

Make this density plot of bill_length_mm filled by species. Use the cheatsheet. Hint: don't supply a y variable.

Complex graphs!

Your turn #6

Predict what this code will do. Then run it.

01:00

Global vs. local

Any aesthetics in ggplot() will show up in all geom_ layers

```
ggplot(penguins, aes(x = body_mass_g, y = bill_depth_mm, color = species)) +
geom_point() +
geom_smooth()
```


Global vs. local

Any aesthetics in geom_ layers only apply to that layer

```
ggplot(penguins, mapping = aes(x = body_mass_g, y = bill_depth_mm)) +
geom_point(mapping = aes(color = species)) +
geom_smooth(method = "lm")
```


Gammar components as layers

So far we know about data, aesthetics, and geometries

Think of these components as **layers**

Add them to foundational ggplot() with +

Additional layers

There are many of other grammatical layers we can use to describe graphs!

We sequentially add layers onto the foundational ggplot() plot to create complex figures

Scales change the properties of the variable mapping

Example layer	What it does
<pre>scale_x_continuous()</pre>	Make the x-axis continuous
<pre>scale_x_continuous(breaks = 1:5)</pre>	Manually specify axis ticks
<pre>scale_x_log10()</pre>	Log the x-axis
<pre>scale_color_gradient()</pre>	Use a gradient
<pre>scale_fill_viridis_d()</pre>	Fill with discrete viridis colors

scale_color_viridis_d()

scale_x_log10()

Your turn **#7**

Make this density plot of bill_length_mm filled by species. Use the viridis fill scale.

For bonus fun, try a different viridis option like plasma Or inferno.

Facets show subplots for different subsets of data

Example layer	What it does
<pre>facet_wrap(vars(continent))</pre>	Plot for each continent
<pre>facet_wrap(vars(continent, year))</pre>	Plot for each continent/year
<pre>facet_wrap(, ncol = 1)</pre>	Put all facets in one column
<pre>facet_wrap(, nrow = 1)</pre>	Put all facets in one row

facet_wrap(vars(continent))

facet_wrap(vars(continent, year))

Your turn #8

Facet this scatterplot by island. Are there any interesting trends?

Coordinates

Change the coordinate system

Example layer	What it does
<pre>coord_cartesian()</pre>	Plot for each continent
<pre>coord_cartesian(ylim = c(1, 10))</pre>	Zoom in where y is 1–10
<pre>coord_flip()</pre>	Switch x and y
<pre>coord_polar()</pre>	Use circular polar system

Coordinates

coord_flip()

Labels

Add labels to the plot with a single labs() layer

Example layer	What it does
labs(title = "Neat title")	Title
<pre>labs(caption = "Something")</pre>	Caption
labs(y = "Something")	y-axis
labs(size = "Population")	Title of size legend

Labels

```
ggplot(gapminder_2007,
        aes(x = gdpPercap, y = lifeExp,
            color = continent, size = pop)) +
 geom_point() +
 scale_x_log10() +
 labs(title = "Health and wealth grow toget!
 subtitle = "Data from 2007",
        x = "Wealth (GDP per capita)",
        y = "Health (life expectancy)",
        color = "Continent",
        size = "Population",
        caption = "Source: The Gapminder Proje
```


Source: The Gapminder Project

Change the appearance of anything in the plot

There are many built-in themes

Example layer	What it does
theme_grey()	Default grey background
theme_bw()	Black and white
theme_dark()	Dark
theme_minimal()	Minimal

theme_dark()

theme_minimal()

There are collections of pre-built themes online, like the **ggthemes** package

ggthemes

Θ

theme wsi

0

theme tufte Wall Street Journal theme

Theme

theme stata Tufte Maximal Data, Minimal Ink schemes

Themes based on Stata graph

theme igray theme hc Highcharts JS theme Inverse gray theme

theme solid

Theme with nothing other than a background color

Organizations often make their own custom themes, like the BBC

Theme options

Make theme adjustments with theme()

There are a billion options here!

```
theme_bw() +
theme(legend.position = "bottom",
    plot.title = element_text(face = "bold"),
    panel.grid = element_blank(),
    axis.title.y = element_text(face = "italic"))
```

Saving graphs

Use ggsave() to save a plot to your computer

Store plot as an object, feed it to ggsave()

my_plot <- ggplot(...)</pre>

ggsave("plot_name.pdf", my_plot, width = 5, height = 3.5)
ggsave("plot_name.png", my_plot, width = 5, height = 3.5)

So many possibilities!

These were just a few examples of layers!

See the ggplot2 documentation for complete examples of everything you can do

A true grammar

With the grammar of graphics, we don't talk about specific chart types

Hunt through Excel menus for a stacked bar chart and manually reshape your data to work with it

A true grammar

With the grammar of graphics, we do talk about specific chart elements

Map a column to the x-axis, fill by a different variable, and geom_col() to get stacked bars

Geoms can be interchangable
(e.g. switch geom_violin() to
 geom_boxplot())

Theme Labels Coordinates Facets Scales Geometries Aesthetics Data

Describing graphs with the grammar

Map wealth to the x-axis, health to the y-axis, add points, color by continent, size by population, scale the y-axis with a log, and facet by year

Describing graphs with the grammar

Map health to the x-axis, add a histogram with bins for every 5 years, fill and facet by continent

Describing graphs with the grammar

Map continent to the x-axis, health to the y-axis, add violin plots and semitransparent boxplots, fill by continent

Graphic design and ggplot themes